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Abstract Over the past 20 years, casting process simulation has been an active area of research.
The simulation techniques are either based on solving governing partial differential equations
using numerical schemes such as the finite element or finite difference methods, or a variety of
heuristically based geometry driven methods. Numerical methods are more accurate, but geometry
driven methods are computationally less expensive. This paper explores two alternative techniques
to overcome some of the limitations of traditional numerical simulation schemes for the casting
process simulation. The first technique uses a geometric transformation method known as the
medial axis transformation, to predict hot spots whereas the second technique, based on meshless
methods, is used for simulating the mould filling process.

1. Introduction
Casting is one of the oldest manufacturing processes. It is used widely in many
industrial sectors and employs processes that are either gravity (e.g. die, sand
and investment) or pressure fed. In all the cases, the purpose of the process is to
produce near net shaped components. The design of the process must address
the supply system for the molten metal, the feeding system as the part solidifies
and shrinks and the thermal control to ensure the integrity of the cast
component by the elimination of all forms of shrinkage porosity from within
the casting. The volume of such a filling and feeding system needs to be
minimised in order to ensure a high process yield. The cross-sectional area of
the interface between the system and the cast component also needs to be
minimised to reduce any fettling work.

Numerical simulation of the casting process has now become a mature field
and a number of computational systems are available specifically for this
purpose. In each case, following the analysis, there is a requirement to examine
the results and to make a judgement on whether the system design is
satisfactory or whether it needs to be improved in any way to ensure part
integrity. Thus, the design of the process is an iterative procedure, based on
trial and error technique. There is no certainty that an optimised design can be
obtained under tight production schedules. The initial applications of
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numerical optimisation methods were in the structural optimisation domain
where objective functions focussed on minimising weight or increasing the
stiffness of the structure (Bletzinger et al., 1992; Hinton et al., 1992). By
performing sensitivity analyses with respect to the design variables, it is
possible to identify an optimised solution that minimises (or maximises) the
objective function. One of the first investigations in the field of casting was
reported by Lewis and Ransing (1998) and Morthland et al. (1995). This paper
demonstrated the effectiveness of shape optimisation techniques to optimally
design feeder volumes.

From discussion with experienced foundrymen, it was also realised that
the accuracy of prediction is not a critical issue on many occasions. For a
foundryman, the knowledge of a relative temperature profile and the locations
of hot spots in a casting are important. It is also necessary for engineers to
rerun a simulation overnight even for a slight change in the geometry. It is
therefore advantageous to improve upon the computational speed by
developing a useful, comprehensive and simple technique.

This paper is divided into the following three parts.
The first part will explore the use of medial axis transformation (MAT) for

predicting temperature and hot spots in a casting process. MAT is a geometric
reasoning tool, which stores the skeletal information of a solid. The technique
has been shown to be useful in a wide variety of geometric reasoning
applications ranging from design, interrogation, animation, finite element mesh
generation, manufacturing simulation and detail suppression (Evans et al.,
1998; Gursoy and Patrikalakis, 1991; Sheehy et al., 1996; Tam and Armstrong,
1991). The application of this technique for predicting cooling patterns in a
solidifying metal is new. The paper also illustrates how the MAT can be used
to predict thermal contraction. The advantage of using MAT is mainly in
computational savings. The medial axis reduces the dimensionality of the
problem by unity, e.g. the medial object of a three-dimensional object is a
two-dimensional surface whereas the medial axis for a two-dimensional object
is simply a curve. The saving in computational time becomes significant if the
analysis is coupled with optimisation techniques. Finite element based
optimisation techniques are inherently computationally expensive and hence
the objective of this research is to develop techniques which can speed up the
optimisation process without significant loss of accuracy.

The second part of this paper will focus on the finite element based
optimisation techniques for designing optimal thermal control in a casting
process. Two case studies have been presented.

The third section of the paper discusses another alternative technique for
simulating the pressure die mould filling process. In this case, the objective of
the research is not in saving computational time but to overcome the
limitations of mesh-based methods in simulating jetting/splashing effects
during mould filling. Mesh entanglement and distortion are the major

HFF
14,2

146



limitations of mesh-based methods. Meshless methods do not have these
limitations and research is currently underway to explore the application of
these techniques to simulate the mould-filling process.

2. Finite element based thermal models
The numerical analysis of thermal behaviour in a casting process is
well-documented (Lewis et al., 1997). The heat transfer between a casting and
die/mould system is governed by conduction, whereas heat is removed from
the system principally by convection from exposed exterior surfaces. The
transient heat conduction equation is written as

dH

dT

dT

dt
¼ 7 · ðk7TÞ ð1Þ

For alloy systems, in simple models, the phase change is usually represented
using an enthalpy method. More rigorous models are available and these make
use of the phase diagram for the alloy system (Lewis et al., 1997).

For a casting simulation process, the heat transfer between the cast and
mould interface is influenced by the evolution of an air gap and/or the
development of high contact stresses. The most convenient way of accounting
for this is by means of an interface element in which the interfacial heat
transfer is determined by means of a heat transfer coefficient hi.

q ¼ hiðT1 2 T2Þ ð2Þ

2.1 MAT and one-dimensional heat conduction
The MAT of a two-dimensional region was first introduced by Blum and Harry
(1967) as an aid to the description of biological shapes. In two dimensions, the
medial axis is a locus of the centre of an inscribed disc of maximal diameter as
it rolls within the domain by maintaining the contact with the domain
boundary. We notice that for a two-dimensional geometry, the MAT is a
one-dimensional entity of the region. Some examples of the MAT for different
shapes are shown in Figure 1.

The objective of this research is to explore the usage of MAT entities in
obtaining approximate temperature solutions for a solidifying cast component
using equations (1) and (2).

It was assumed that all the boundaries of the casting are homogeneous and
that the heat flux emanates normally from the medial axes. This assumption is
essentially one-dimensional and analytical solutions to such problems are
given by Carslaw and Jaeger (2000). With the observation that the transient
solutions are similar for a particular case of homogeneous boundary condition,
the temperature values from the one-dimensional analytical solution are
normalised with respect to the radius R of the largest inscribed circle and the
maximum time t0,
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T ¼ T
d

R
;

t

t0

� �
ð3Þ

to obtain temperature values at any arbitrary point d, which is along a normal
to the medial axis. With the knowledge of the location of the medial
axes, together with the radial information of the inscribed circles at all junction
points, the radius of the largest inscribed circle R can be determined. All
coordinate points, d, perpendicular to the medial axes in the casting can now be
normalised with respect to the maximum radius R. Thus, the transient
temperature profile can be calculated by using equation (3) and a series of
pre-determined one-dimensional transient analysis solutions (Pao et al., 2002).
Figure 2 schematically describes the procedure followed for the interpolation.

2.2 Numerical examples
In this section, we investigate the feasibility of the proposed medial axis
interpolation method by comparing its solution with an equivalent finite
element analysis. An L-shaped geometry, as shown in Figure 3, was selected as

Figure 1.
(a) 2D object; (b) 3D
object with their
inscribed medial axes;
and (c) 3D example of a
medial object
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a test case. Both arms of the L section have different thickness values so as to
ensure that the method is capable of correctly interpolating the temperature
profile under generalised geometry conditions. The initial temperature in the
domain is 1008C, the ambient temperature is 258C, K ¼ 1; rc ¼ 1, and a ¼ 1:
The simulation was performed for a time span of 2.5 s, with a time step size
of 0.1 s.

Figure 3.
Comparison of finite

element and interpolated
temperature solution at

different times

Figure 2.
Procedure

for temperature
interpolation
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The temperature profiles at different time levels, obtained using the proposed
method, are compared with the solution obtained by the finite element method
(Figures 3(a)-(d)).

A realistic geometry has also been simulated with the same material
properties and boundary conditions. Figure 4 shows the temperature
distribution using the proposed technique at different time levels.

3. Thermal contraction simulation using MAT
In the foundry industry, experienced foundrymen would agree that the distorted
shapes of the cast and moulded components can be predicted by using rules of
thumb, visualising the skeletal geometry and identifying those sections of the
geometry which solidify earlier in comparison with others. The distortion and
shrinkage rules are applied to the representative skeleton of the geometry. For
example, during solidification an “I” section will shrink along the vertical line
and reduce in thickness. Similarly, shrinkage rules can be applied along the
centrelines of U, L, V, O, H and T sections. It can be observed that these sections
may be uniquely represented by a centreline if the thickness information is
stored at every point along the centreline. The distortion and stress hotspots can
then be identified by the selective application of shrinkage rules.

As described earlier, it can be observed that the scientific method to
represent sections of the type L, U, I, etc. along the centreline is nothing but the
geometry given by the MAT. A medial object stores all the necessary
information about a given geometry so that it can be effectively used in any
geometry-based reasoning technique. This section illustrates how this
technique can be effectively used to predict thermal distortion. Figure 5
shows a solid material of height 1 m and width 0.6 m, together with its medial
axes. The contours in this figure show the temperature difference that is
applied as thermal loading over one-time step.

The temperature field is obtained by solving a steady-state heat conduction
problem as described in a list of selected benchmarks published by Barlow and
Davis (1986). This ensures that the prescribed temperature distribution is in no
way an arbitrary choice, but are based on physically sound principles.

Figure 4.
Solidifying temperature
profile in an arbitrary
section at different time
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On knowing the temperature distribution, the thermal contraction/expansion of
the material can be solved by means of prescribing the thermal load to the
quasi-static momentum balance equation (Chandrupatla and Belegundu, 1991)
which is a standard FE procedure. At this stage, only an elastic model will be
considered. The boundary conditions for the equilibrium problem are shown in
Figure 5. The thermal expansion/contraction of the medial axes is modelled via
beam elements. It is obvious that the beam model should have the same
boundary conditions as the solid continuum model, i.e. a clamped boundary
condition.

Figure 6 shows the comparison between the displacement profile for
the continuum model and the beam model. It should be mentioned that
the conventional Euler-Bernouli’s beam model has been used for this

Figure 5.
Continuum test case with

a thermal loading

Figure 6.
Comparison between the

continuum and beam
displacements
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analysis. The choice of this beam model is mainly due to its simplicity. In a
specific thermal analysis for casting deformation, only the axial displacements
are required, since a thermal loading essentially produces a hydrostatic state of
stress. In the figure, displacements in both the X- and Y-directions have been
magnified 100 times, and only the boundary of the deformed continuum model
is shown. It is obvious that both the displacement profiles are similar, but the
numerical values are not the same. The right upper arm of the beam moves
further away while the right lower arm of the beam is less deformed as
compared to the continuum solution. The reason for this discrepancy can
perhaps be attributed to that fact that both right arms in the beams are free to
move in both directions and are only constrained by their axial members. In the
continuum model, the deformation of the right corner points is however
constrained by their neighbouring points in both the X- and Y-directions. This
research topic is still under investigation and it would appear that the inscribed
circle radius information may need to be considered in a coupled way to
achieve a better comparison.

4. Finite element based optimisation of casting processes
Numerical optimisation requires the definition of a design function. In the case
of optimisation based on a heat transfer mechanism, this only needs to include
variables that are affected by heat transfer, such as temperature or freezing
time. In the case of shape optimisation the function needs to include
dimensional (or mass) information as well as thermal contributions. It is usual
to express this as an “objective function” that needs to be minimised or
maximised. Also, the process design variables need to be maintained within the
practical limits and this imposes constraints on the optimisation process. Thus,
the optimisation process can be expressed mathematically as minimising
(or maximising) the objective function F(X ), subject to the equality constraint

HiðX Þ ¼ 0 i ¼ 1;L ð4Þ

and the inequality constraint

GjðX Þ # 0 j ¼ 1;M

In these equations, the variable X represents design variables, such as the heat
transfer coefficient at the die wall or the dimensions of the feeding and filling
system. The values L and M represent the number of constrained and
unconstrained design variables. The optimisation process was carried out by
means of the commercial code DOT (Vanderplaats, 1984). Following a
sensitivity analysis, this evaluates the objective function and automatically
perturbs the design variables so as to minimise (or maximise) the design
function. In this work, the BFGS algorithm (DOT user manual, 1985) has been
used due to its efficient convergence rate. The solution flow diagram for a finite
element based optimisation algorithm is shown in Figure 7.
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Feeding design decisions such as the insulation around a feeder, provision of
chills, exothermic pads or die coating thickness in the case of gravity dies, etc.,
are associated with an appropriate interfacial heat transfer coefficient value
across the metal-mould interface. The objective of the feeding design is to keep
the hot spots in the feeder, i.e. to eliminate the shrinkage porosity within a
casting. The reliability of any numerical analysis, which is used to assist with
this, largely depends on the heat transfer model used across the metal-mould
interface.

4.1 Optimisation of temperature dependent interfacial heat transfer coefficients
This section describes a case study, which controls the interfacial heat transfer
so as to achieve directional solidification to eliminate the occurrence of hot
spots in a casting. In other words, if a hot spot is detected inside the casting
then it is moved into the feeder.

The feed metal flow path is a path along which a feeder may feed the casting.
For the casting example shown in this study (Figure 8), the feeder is expected to

Figure 7.
Steps required in a finite

element-based
optimisation algorithm
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feed the casting along the path from point 10 to 1. The user may input any
desired feed metal flow path to the optimisation program.

If the feed metal has to flow along the path shown in Figure 8, then a freezing
time gradient has to be maintained so that:

tf 10 l tf 9 l tf 8 l tf 7 l tf 6l tf 5 l tf 4 l tf 3 l tf 2 l tf 1 ð5Þ

where tfi is the freezing time at point i. The freezing time at any point is defined
as the time at which the temperature reaches the solidus temperature of the cast
material. The nodal freezing times are calculated during the solidification
analysis and from these values the freezing time at the ith design point can be
interpolated by:

tf i-node
¼ t 2 Dt

Tt
i-node 2 Tsol

Tt
i-node 2 Tt2Dt

i-node

" #
ð6Þ

where tf i-node
is the freezing time at ith node, t the runtime, Dt the time step,

Tt
i-node the nodal temperature at time t, and Tsol the solidus temperature.
The objective function is then defined as a deviation from the defined feeder

metal flow path:

Cost ¼ n
Xsn21

i¼1

p max tf i
2 tf iþ1

; 0
� �

ð7Þ

where n is the number of feed metal flow paths, sn is the number of points in the
nth feed metal flow path, p the penalty term, and tfi is the freezing time at the ith
design point.

The objective function states that if tf i
2 tf iþ1

is negative, then the freezing
time gradient is maintained and so the objective function is satisfied and
assigned a zero value. If the gradient is not maintained, tf i

2 tf iþ1
will

be positive and this result is taken and then penalised. The penalty is

Figure 8.
An example of the feed
metal flow path. Point 10
lies within the feeder and
should solidify last
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dependent on the distance from the farthest point from the feeder. The penalty
increases with increasing distance from the farthest point.

The study uses a generalized equation proposed by Lewis and Ransing,
(1998) that offers a natural choice for design variables, which can be used to
optimise the die coating thickness. This definition of design variables allows us
to consider the temporal variation of interfacial heat transfer coefficients (h),
unlike the unrealistic heat transfer optimisation using constant interfacial heat
transfer values, i.e.

h ¼
ea1 e2a2=x 2

xa3
where x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2=a3

p
þ maxð0;TL 2 T intÞ ð8Þ

where a1, a2 and a3 are arbitrary constants with a range of 11-13.5, 100-1,000
and 1.0-1.2, respectively. TL is the liquidus temperature and Tint is the casting
interface temperature. The design variables are set as a1, a2 and a3 at nine
interface segments around the casting system (Figure 9).

Therefore, at each of the nine locations there are three variables a1, a2 and
a3, hence 27 design variables are used. These values have to be normalised
in order to ensure that the optimisation effects of making changes to each
variable is equal, since each variable is of a different magnitude. To do this
the upper bound is assigned +1.0 and the lower bound is assigned as
being 21.0.

The next stage of optimisation is the sensitivity analysis. A finite difference
sensitivity method was used in this study. Each design variable was slightly
perturbed individually while the others remained constant. A new value for the
objective function was calculated using the gradient of the objective function
with respect to the design variable. This was repeated for all design variables.
A commercial software DOT (Vanderplaats, 1984) has been used for the
sensitivity calculation and the subsequent optimisation.

Figure 9.
Location of interface

segments

Alternative
techniques for

casting

155



›Cost

›Xi

<
CostðX1;X2; . . .;Xi þ DXi; . . .;XnÞ2 FðX1; . . .4;XnÞ

DXi

›Gj

›Xi

<
GjðX1;X2; . . .;Xi þ DXi; . . .;XnÞ2 GjðX1; . . .;XnÞ

DXi

ð9Þ

4.1.1 Numerical simulation. The cast metal was an aluminium alloy LM25 with
615 and 5508C as liquidus and solidus temperatures, respectively. The mould
was a steel mould with H13 material specification. The initial temperature for
the melt and mould were assumed to be 625 and 1508C. The convection
boundary condition of 75 W/m28C was applied on the outer surfaces and the
ambient temperature was assumed to be 258C. Constant conductivity values of
186.3 and 33.9 W/m8C and density 2,790 and 7,721 kg/m3 were assumed for the
metal and mould, respectively. The temperature dependent enthalpy curve
used has been tabulated (Table I).

The interfacial heat transfer coefficient variation, as shown in Figure 10, was
input to the optimisation program. The corresponding freezing time contours
are shown in Figure 11. The optimal freezing time contours are shown in
Figure 12 with corresponding interfacial heat transfer variations as shown in
Figure 13. It has been recommended that locations 3 and 6 be cooled fastest
with a starting interfacial heat transfer value of around 8 kW/m28C. Locations 5
and 8 have a starting value in a similar range of 5.5 kW/m28C. Insulation has
been proposed for locations 1 and 2 (with a starting value of 450 kW/m28C).
Feeding design decisions, such as insulation around a feeder, provision of

Metal Mould

Temperature (8C) Enthalpy (J/kg) Temperature (8C) Enthalpy (J/kg)

0 0 0 0
550 6.011 £ 105 200 1.424 £105

615 1.0699 £ 106 400 2.488 £105

800 1.2721 £ 106 800 5.696 £105

Table 1.
Enthalpy curve used for
the metal and mould

Figure 10.
Initial heat transfer
coefficient variation
(same at all interface
locations)
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chills, exothermic pads or die coating thickness in the case of gravity dies, etc.,
are associated with an appropriate interfacial heat transfer coefficient value
across the metal-mould interface and may be designed according to these
predictions.

Figure 13.
Final temporal variation

of heat transfer
coefficients at various

locations

Figure 11.
Initial freezing time

contours

Figure 12.
Optimal freezing time

contours
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4.2 Shape optimisation of feeders
The second case study is shown in Figure 14. This comprises a simple
aluminium hub that is cast by means of the gravity die process and uses LM25
as the alloy material. In this case, the aim is to optimise the size of the feeding
system that is positioned on top of the casting.

Since this part is also bottom filled through a small section, again it will be
assumed that the filling system does not contribute to this phase of the process,
even though the filling cup represents a large volume of metal in the die.
Figure 14 shows only the cast part and top feeder system. The potential shape
changes that will be available to optimise the shape of the feeding system are
also shown in the figure. This allows changes in feeder size as well as the
sectional area that links with the cast part itself. In this case, the objective
function must include both the thermal and volume components. It is now
given by:

FðXÞ ¼ {TA 2 TB þ C} þ W
Volume of Feeder

Max: Volume of Feeder


 �
ð10Þ

where TA and TB are the temperatures at points A and B at 500 s; C is the
forces at the thermal gradient, here C ¼ 20; and W is the weighing of the
shape optimisation, here W ¼ 1:

Figure 14.
Schematic view of the
hub casting and feeding
system
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This choice of function ensures the directional solidification of the part via the
thermal contribution and the effect of the feeder size and shape by means of the
mass term.

The calculations were carried out for an ambient temperature value of 258C
with a convective heat transfer coefficient value of 75 W/m28C being applied
over all external surfaces. As shown in Figure 14, several geometric variants
were investigated, however, only a selected result will be presented, as shown
in Figures 15 and 16, which will depict the initial and final optimised design
schemes as finite element meshes and the zones of liquid, mushy and solid

Figure 15.
Initial casting design

scheme (cooling
time ¼ 3 s)

Figure 16.
Final optimised casting
design scheme (cooling

time ¼ 3 s)
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materials. Clearly, the initial result is a feasible casting since the last zone to
solidify lies in the feeder system. However, the feeder is large in comparison
with the casting and represents a significant energy waste since the metal is
recycled in its molten form.

The final design shows a much reduced size of the feeder system, which still
gives an acceptable part with a mushy zone left only in the feeder with an
elapsed time of 3 s, thus highlighting the reduction in cycle time for the
optimum design. From a practical viewpoint, trials in the foundry confirmed
the benefit of the feeder size reduction as highlighted in Figures 15 and 16.

5. Meshless methods – an alternative technique for mould filling
simulation
In recent years, a family of meshless methods have been developed to solve
large deformation problems in both fluid and solid mechanics to maximize the
advantage of Langrangian numerical simulations. These meshless methods do
not need meshes or grids in their formulation. Since these particle methods
involve only a number of nodal points, or particles, they are totally free from
mesh entanglement and distortion, which may occur in the computational
simulation of large deformation problems using traditional mesh-based
methods. Hence, the advent of mesh-free methods has led to the opening of new
avenues in the numerical computational field. Consequently, particle-based
methods have emerged as an attractive alternative for modelling mould filling
simulation in casting processes. In this section, the Corrected Smooth Particle
Hydrodynamics (CSPH) method (Bonet and Kulasegaram, 2000; Bonet and Lok,
1999) was used to simulate mould filling of a gravity die casting problem
similar to that given by Sirrell et al. (1996). CSPH is a Lagrangian method based
on smooth particle hydrodynamics (SPH) (Bonet and Kulasegaram, 2000; Bonet
and Lok, 1999; Lucy, 1977; Monaghan, 1998) techniques. In the CSPH method,
the quantities determining the flow are localised on a set of particles, which
move with the flow. This enables the method to easily follow complex free
surfaces, including break up of the fluid into fragments.

5.1 Numerical methodology
In the SPH method, a given function f (x) and its gradient 7f (x) are
approximated in terms of values of the function at a number of neighbouring
particles and a kernel function W ðx 2 xb; hÞ ¼ W ðx; hbÞ as,

f hðxÞ ¼
XM
b¼1

Vbf bWbðx; hbÞ and 7f hðxÞ ¼
XM
b¼1

f bgbðxÞ ð11Þ

where h is the smoothing length and determines the support of the kernel
(Figure 17); Vb denotes a tributary volume associated with particle b (typically
evaluated as the particle mass divided by the density); and in the standard SPH
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technique, the gradient vector g is simply gb ¼ Vb7Wb: However, in CSPH
methods gradient functions are amended to ensure that the gradient of general
constant or linear function is correctly evaluated. This requirement leads to two
simple conditions for these gradient vectors, namely:

XM
b¼1

gbðxÞ ¼ 0 and
XM
b¼1

x ^ gbðxÞ ¼ I ð12Þ

A detailed description of various methodologies that can be adopted to fulfil the
above conditions can be found in the literature (Bonet and Kulasegaram, 2000;
Bonet and Lok, 1999). The formulation of governing equations for mould filling
simulation is described in the following section. Detailed discussions on the
derivations of governing equations can be found in the literature (Kulasegaram
et al., 2002; Kulasegaram et al., 2003).

5.2 Equations of motion
Now consider a continuum represented by a large set of Lagrangian particles
as shown in Figure 18. Each particle a is described by a mass ma, position
vector xa and velocity va.

The equations of motion can be expressed in variational or energy form by
defining the total kinetic energy K, total internal energy Pint and total external
energy Pext as;

Figure 17.
SPH interpolation

Figure 18.
Representation of

continuum by a set of
particles
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K ¼
1

2 a

X
maðva · vaÞ; Pint ¼

a

X
mapðr; . . .Þ;

Pext ¼ 2
a

X
maðxa · gÞ

ð13Þ

where p will depend on the deformation, density or other constitutive
parameters and g represents the gravitational field. The equations of motion of
the system of particles representing the continuum can now be evaluated
following the classical Lagrangian formalism to give:

d

dt

›L

›va

� �
2

›L

›xa

� �
¼ 0; Lðxa; vaÞ ¼ KðvaÞ2PintðxaÞ2PextðxaÞ ð14Þ

Substituting equations (13) into the above expressions leads to the standard
Newton’s second law for each particle as:

maaa ¼ Fa 2 Ta ð15Þ

where the external Fa and internal Ta forces are;

Fa ¼ 2
›Pext

›xa
¼ mag; Ta ¼

›Pint

›xa
¼

›

›xa b

X
mbp ðrb; . . .Þ ð16Þ

The evaluation of the internal forces will depend on constitutive definition of
the material. For incompressible fluid by using equation (11) to evaluate the
density, an expression for internal force can be obtained as:

Ta ¼
b

X
mamb

pa

r 2
a

þ
pb

r 2
b

 !
7W ðxaÞb; p ¼ r2 dp

dr
ð17Þ

where pressure p is related as shown above to the internal energy.
In the context of the proposed variational formulation, viscosity can be

introduced via dissipative potential. This leads to a new term in the Lagrange
equations as,

d

dt

›L

›va

� �
2

›L

›xa

� �
¼ 2

›Pdis

›va
: ð18Þ

In general, the dissipative potentials are expressed as the sum of the viscous
potentials per unit mass c, which in turn are functions of the rate of
deformation tensor d, as,
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Pdis ¼
a

X
macðdÞ; 2d ¼ 7v þ 7vT: ð19Þ

For instance, in the case of a Newtonian fluid, the viscous stresses are defined
by:

svis ¼ 2md0; d0 ¼ d 2
1

3
ðtr dÞI ð20Þ

where m is the material viscosity and d0 is the deviatoric rate of the deformation
tensor. The gradient of the velocity at each cotinuum particle is obtained with
the help of equation (11) as,

7va ¼
XMa

b¼1

vb ^ gbðxaÞ: ð21Þ

After some algebraic manipulation the internal forces due to viscous effects can
be evaluated as,

Tvis
a ¼

›Pdis

›va
¼

b

X
mb

svis
b

rb

� �
gaðxbÞ: ð22Þ

Thermal effects associated with the dynamics of the material can also be easily
incorporated with the above equations to simulate the gravity die casting
process. The velocities and positions of the particles are updated by an explicit
leap-frog time integration scheme defined by,

v
nþ1

2
a ¼ v

n21
2

a þ Dtan
a ; x

nþ1
2

a ¼ xn
a þ Dtvn

a ð23Þ

The following example compares the flow patterns given by the meshless
method with a solution given by the finite element method. An input
velocity of 3.5 m/s has been considered for this gravity die casting
benchmark geometry. The major disadvantage of the meshless method is
that it is computationally very expensive as compared to an equivalent finite
element analysis. This is due to the fact that in the case of meshless method
searching of neighbouring particle as well as the searching of particle closer
to the boundaries have to be performed at every time step. In addition, using
explicit type time stepping scheme also enforces the restriction on maximum
size of the time step. However, this research has shown that the method
compares well with the finite element method and has a potential advantage
in simulating flow through pressure die casting process where jetting and
splashing effect is predominant and where the finite element method suffers
from meshing difficulties. Figure 19 shows some of the initial results of this
comparison.
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6. Conclusions
The paper proposes some alternative methods for casting simulation in order to
overcome some of the limitations of the finite element method. One of the major
advantages of using numerical simulation tools for the casting process is to
avoid expensive experimental trials in choosing optimal process, material and

Figure 19.
Comparison of the mould
filling simulation pattern
between the meshless
method and finite
element method
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design parameters. As illustrated in this paper, finite element based thermal
optimisation of castings offers a way forward to assist optimal feeding of
castings. However, this procedure is computationally expensive. A novel
method of interpolating one-dimensional finite element solutions using the
MAT technique has been demonstrated in this paper to predict the
solidification pattern. The main advantage of this method was the reduction
in the computational costs which may make the optimisation process
computationally economical and hence feasible in a foundry environment.

In the later part of the paper, another limitation of the finite element
simulation is addressed. Splashing and jetting effects are common during the
mould filling process and are particularly important for the pressure die
casting process. The free surface modelling of this phenomenon is a complex
problem and is associated with the problems of mesh distortion and
entanglement. An alternative technique, based on a meshless method, has been
explored in this paper and results are compared with the finite element method.
The meshless method seems to be more accurate for capturing free surface
flow, however, at this stage it appears to be more computationally expensive.
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